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The concept of nonlocality is introduced into physics by means of a stochastic 
context using Langevin and Schwinger-Dyson techniques. This allows us to 
reformulate the finite theory of quantum fields, free from ultraviolet divergences, 
based on the stochastic quantization method with nonlocal regulators. As a 
nonlocal regulator we choose any entire analytic function in the momentum 
space, which guarantees that our regularization method for any theory of interest 
does not violate basic physical principles such as unitarity, causality, and gauge 
invariance of the theory. Here we present the regularization scheme for scalar, 
gauge, and scalar electrodynamic theories. Our mathematical prescription is 
similar to the continuum regularization method of quantum field theory with 
meromorphic regulators investigated by Bern and his team. 

1. I N T R O D U C T I O N  

In recent  years ,  in teres t  has s ignif icant ly  inc reased  in the s tudy  of  
s tochas t ic  processes  and  non loca l  (or  ex t ended)  ob jec t s - - f i e lds ;  this is due  
to the  fact  that  it has been  poss ib le ,  first, to es tabl ish  an in t imate  connec t ion  
be tween  the theory  o f  s tochas t ic  processes  and  qua n tum physics  (Nelson ,  
1967; Guer ra ,  1981; Migda l ,  1986; Namsra i ,  1986) [see D a m g a a r d  and 
Hiiffel (1987) for  ear l ier  references] ,  and  second,  to const ruct  a unif ied 
theory  o f  all  types  o f  e l emen ta ry  par t ic le  in terac t ions ,  inc lud ing  grav i ta t iona l  
force (Fu r l an  et al., 1987; Green  et al., 1987; Cha ich i an  and  Nel ipa ,  1984; 
Lai,  1983; Wal l ,  1987). The fo rmer  is known  unde r  the genera l  name o f  the 
s tochas t ic  quan t i za t ion  o f  systems. There  are  different  a pp roa c he s  to the 
desc r ip t ion  o f  s tochas t ic  processes ,  which fo rmal ly  co inc ide  with q u a n t u m  
p h e n o m e n a .  A m o n g  these,  the a t t rac t ion  o f  the s tochast ic  quan t i za t ion  
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method proposed by Parisi and Wu (1981) is that it has succeeded in 
reducing quantum field theory to a Gaussian stochastic process called the 
Langevin equation, which usually runs in an auxiliary "fifth time." 

Other directions are being developed in the investigation of nonlocal 
extended objects. Some of them originally arose from intrinsic problems of 
local quantum field theory, such as the ultraviolet divergences, problems 
of electron self-energy, etc. To solve these problems, it is usually assumed 
that the idealized concept of locality may be violated at small distances and 
some static characteristics of elementary particles must be described by 
nonlocal values with distributions over space; for example, the charge and 
mass of the particle may be represented in the form 

e= f pe(r) dr; m= f pm(r) dr 

On the other hand, mathematically this means that the Dirac &function 
distribution should be replaced by a nonlocal distribution of the type [for 
details, see Efimov (1985)] 

oo C 

84(x)~K(x) = E ~([212)"6(4)(x) (1.1) 
n=o ~zn)! 

or for the wave function of the particle 

ek(x)~(x)  = ff (d4y)K(x-Y)O(Y) (1.2) 

[qS(x) is a local field], i.e., elementary particles may be understood as 
spread-out (or nonlocat) objects with some dimension I of length (see 
Figure 1). 

It should be noted that from a purely geometrical point of view, a 
relativistic invariant description of extended objects is possible only in the 
one-dimensional case, i.e., relativistic dynamics for strings may be success- 

//o 
Fig. 1. Illustration of local and nonlocal objects depending on the dimension of space: 
(a) local object, (b) spread-out (extended) object (ball, bag, etc.) in three-dimensional case, 
(c) extended object (string) in one-dimensional case. 
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fully constructed. Nevertheless, from the field point of view, a relativistic 
invariant construction of the interaction picture between nonlocal objects 
of type (1.2) is also achieved due to relativistic invariant properties of 
nonlocal distributions (1.1). In the last case, a basic peculiarity of introduc- 
ing nonlocality (1.1) is that it leads to a change of the particle propagator, 
for example, for a scalar particle: 

A(x - y )  = (0l T(cb(x)~(y))lO) 

~D(x-y )  

= (01T(q~(x)~(y))lO) 

f d4 p e_ip(x_y) V(p212) 
= ~ m 2 _ p z _ i s  (1.3) 

where V(pel 2) is the Fourier transform of the nonlocal distribution K(x). 
In this paper, we present a method of introducing nonlocality (1.1)- 

(1.3) into a stochastic quantization scheme within the framework of the 
Langevin and Schwinger-Dyson formalisms [for details, see Bern et al. 
(1987a, b)]. These two equivalent formulations describe quantum field 
theory in d dimensions by means of Markovian stochastic processes in 
(d + 1) dimensions via a regularized Parisi-Wu (1981) Langevin equation 
and by a d-dimensional prescription via regularized Schwinger-Dyson 
equations, respectively. We assume that the noise term in these equations 
plays a double role in the theory: it controls the quantum behavior of the 
theory and at the same time it carries nonlocality in the stochastic equations. 
Further, we show that the scheme obtained in such a way is equivalent to 
the nonlocal theory with regularized propagator of the type of (1.3). 

An outline of the present paper is as follows. Section 2 introduces the 
nonlocality into the (d + 1 )-dimensional Langevin formulation for the scalar 
theory. In Sections 3 and 4 we discuss the equivalent d-dimensional regular- 
ized Schwinger-Dyson equations and their more or less conventional weak 
coupling expansion applied to the calculation of the three-point junction. 
Section 5 is devoted to the introduction of nonlocality into gauge theory 
and to the reformulation of gauge-covariant Langevin systems in (d + 1) 
dimensions, for which we derive the regularized Langevin-Feynman rules. 
These rules are applied in Section 6 to a computation of the one-loop gluon 
mass in Q C D  4. As sketched in Bern et al. (1987a-c), the mass is zero, 
providing an explicit check of gauge invariance of this order for entire 
analytic regulators. Section 7 deals with the simplest gauge theory scalar 
electrodynamics. This last section is preparative in character in order to 
generalize our prescription to the non-Abelian theory and the serious 
student may be advised to begin with this case. 
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2. NONLOCAL GAUSSIAN NOISE AND REGULARIZED 
LANGEVIN SYSTEMS FOR THE SCALAR THEORY 

2.1. Nonlocal  Noise 

We consider the Markovian Parisi-Wu Langevin system for a d- 
dimensional theory of a scalar local field 4,(x) with Euclidean action S: 

6S ~(X, t)= - - ~ ( X ,  t )+~l (X  , t) (2.1) 

where t is an additional fictitious "fifth-time" variable, x represents d- 
dimensional Euclidean coordinates, and ~(x, t) is the usual local Gaussian 
noise satisfying the condition 

(71(x, t)~l(y, r))n : 2 ~ ( t -  "r)6d(x-y) (2.2) 

Now the question arises of how to introduce nonlocality into this 
stochastic equation in order to obtain an equivalent stochastic formulation 
for the nonlocal field q~(x) in (1.2) with propagator (1.3) in the Euclidean 
metric. We assume that the noise term in (2.1) carries nonlocality only and 
by analogy with (1.2), in this case, it takes the form 

~/(x, t ) ~ A ( x ,  t) : f (dy) K(x -y)-q(y, t) (2.3) 

where (dy)= ddy, and K(x) is nonlocal distribution investigated in detail 
by Efimov (1977, 1985). The nonlocal distribution K(x-y)  = Kxy(Tq) that 
multiplies the noise is a function of the Laplacian 

Dxy = f (dz)(O~)x~(O~)~y 
QI 

(2.4) 
(a.)~ --- o~ a~(x-y) 

which guarantees that Kxy(D) = Kyx(77). We will choose here a wide class 
of distributions 

co Cn 
Kxy(D) = ,=o • ~ (D12)"aa(x -y)  (2.5) 

for which the ordinary Parisi-Wu equation is regained in the limit 1 ~ 0, 
i.e., Kxy(D) ~,~0 ~(x - y ) .  

2.2. Nonlocal Distributions 

We see that the function (2.5) is the generalized form of  the wel l -known 
local Dirac ~-function. As usual, its space-time properties are investigated 
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in Minkowski space-time with metric g.~ =(goo = -gl~ = - g 2 2 = - g 3 3  = 1, 
g.~ = O, /z # v) and depend essentially on the sequence of coefficients c, 
(generally speaking, they are complex numbers). We say that the generalized 
function (2.5) is given in some test function space if for any f c  ~ the 
functional 

f oo Cnl2n n 
( K , f )  = daxK(x) f (x)  = 2 ~_.~,.r-q )C(x)[,. o<oo (2.6) 

n = 0  s  

is well defined, i.e., the obtained series converges absolutely. Passing to the 
momentum space in (2.6), we obtain 

(K, f )  = f dap ~(p2)f(p)  <o0 (2.7) 
J 

where 
oo Cnl2n 

R(p2) = E ~ ( p 2 ) ~  (2.8) 
n = O  t~n)'. 

and f(p) is the Fourier transform o f f ( x ) .  In other words, the generalized 
function (2.5) is given on ~ if the series (2.8) defines the function /~(p2) 
for all p2 and the integral (2.7) converges for any f ( x ) c  ~ Both conditions 
(2.6) and (2.7) are equivalent. 

As shown by Efimov (1977), basic physical principles, such as unitarity 
and causality, dictate that as the Fourier transform of (2.5) an entire analytic 
function should be chosen. Further, we are interested only in the class of 
distributions K(x) for which / ( ( z )  in (2.8) are entire functions of the 
variable z with a finite order of growth, o0> p_>l, and which decrease 
rapidly enough when z = p2~--o(3 (in the Euclidean direction). 

In the Euclidean domain of the variable p2 for the Fourier transform 
(2.8), the Mellin representation 

1 - [-t3-i~ d~ w(~) 12~(m2+p~) ~ (2.9a) 
K (-p212) = ~  d-t3+i~ sin cry: 

o r  

1 f | - t 3 - '~d (v (~ )  12~(m2+p2) ~ (2.9b) V(-p~12) = [I((-PZel2)]2 = ~  J-~+i~ sin ~r~: 

(0 </3 < 2) is valid. The form of the functions w(~:) and v(~:) depends on 
the form of the function K(-pZEI2). For example, if 

m414b -4 / s in  b ,~2 s i n  2 b 
V~ = 2 / - - -  cos b]  k2 = [sin(ml)/ml-cos(ml)] \ b ' b 2 

(2.9c) 
- b  2 V2=[(sinb)/b]4; V3=e ; V4=2~F(I+s) L(b) 

b ~ 
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where Js(u) is the Bessel function for some given value s > 0 ,  and b=  
[ ( rnZ + p2 )IZ] 1/2, then 

vl(() =9.24+2~(2(2+7 �9 ~:+5)/F(7+2s 

v2(~:) = 23+2~(22e+2- 1)/F(5 + 2~:) 

w2(~:) = 21+2~/F(3 +2~:) (2.9d) 

v3(s r = l /F(1 +~:) 

v4(s c) = F(1 + s)/[22~F(1 + 4:)F(1 + s + ~)] 

The physical meaning of the form factor V(-p212) consists in changing 
the form of the potentials between interacting fields (for example, the 
Coulomb and Yukawa laws) at small distances and in making the theory 
finite in each order of the perturbation series of the theory of the coupling 
constant (Efimov, 1977; Namsrai, 1986). The question of the possible unique 
choice of the form factors was discussed by Efimov (1977) (see also Papp, 
1975). Efimov (1977) has shown that the objects constructed by the distribu- 
tions K(x)  of (2.5) are spread out (nonlocalized) over space. Thus, the 
relativistic invariant distributions K(x)  give a correct description of exten- 
ded objects. In this case, roughly speaking, the parameter I may be identified 
with the size of an extended object (a particle). 

Our next goal is to introduce such a type of nonlocality into stochastic 
equations. We now turn to this problem. 

2.3. Regularized Langevin Systems for the Scalar Theory 

With the assumption (2.3), equation (2.1) now acquires the form 

~(x, t)= -~-~(x, t)+ (ay) K(x-y)~(y, t) (2.1o) 

An expression of type (2.10) makes it possible to realize our program 
mentioned in a previous work (Namsrai, 1986). We notice that our stochastic 
prescription using entire analytic regulators including exponential ones may 
be technically superior and useful for nonperturbative analysis, which 
appeared already in a paper due to Doering (1985) using the scalar prototype 
regulator described by Bern et aL (1987a). As in the usual local stochastic 
formulation, our prescription for the nonlocal Euclidean Green functions 
of the theo~ 7 

(F[~b( �9 )]) = l im(F[4,(- ,  t)])~ (2.11) 
t ~ o o  

completes the computational scheme. 
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According to Bern et al. (1987a), the method expounded in this section 
is easily generalized for a local symmetry, which will be discussed in Section 
5. In this case, the only change in the scheme is the replacement of the 
Laplacian by the covariant Laplacian in equations (2.1)-(2.5) and (2.10). 

We will further follow Bern et aL (1987a, b) everywhere and obtain 
explicit weak coupling expressions for equation (2.10). First consider the 
simpler case 

s = f (ctx)[�89189 (2.12) 

To solve equation (2.10) with (2.12) and calculate correlation functions in 
the free case, it is convenient to introduce the free Green's function G(x, t), 
which satisfies 

0 - -G(x ,  t ) - ( D  - m2)G(x, t)= #d (x)a( t) 
Ot 

with the initial condition 

G(x, t)=0, t < 0  

This equation is easily solved to give the explicit expression for G: 

G(x, t )=  O(t) f (dp)e -'px-'(p2+m2~ (2.13) 

where (dp)= ddp/(2~) d and p---Pe. Thus, for (2.12), the integral formula- 
tion of the system (2.10) is 

I f/ dg(x, t) = (dy) dt' G(x -y ,  t -  t') 
cx3 

Here A' is the first derivative of the potential and we have employed the 
technical device of choosing to = - ~ ,  so that the system has equilibrated 
at any finite fifth time. The integral equation may be iterated to any desired 
order (Parisi and Wu, 1981) as 

ch(x,t)=I G,,1(KrI),-flGxlA'(fzG~2(K~)2-fzG12A'(f3G23(Krl)3...)) 

(2.15) 
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Fig. 2. Langevin tree diagrams through O(g 2) in the nonlocal stochastic scheme. 

where we used the compact  notation 

Gxl =- G(x - x l ,  t - tl) 

(Kn)I ~ I (dy) Kx~y(E])n(y, tl) (2.16) 

According to Bern et al. (1987a), for concrete calculation purpose it is 
convenient to represent this iteration by Langevin "tree diagrams," as shown 
in Figure 2 for the explicit choice A = g4)3/3 !. In these diagrams, each line 
corresponds to a Langevin Green function (2.13), and its arrow represents 
its retarded property, while a cross at the end of a line represents a nonlocal 
form factor (or regulator) times a noise factor. 

In the nonlocal stochastic scheme, the tree diagrams may be succinctly 
summarized in a simple set of  Langevin tree rules, as shown for this case 
in figure 3. 

Using equations (2.2), (2.13), and (2.15), we easily obtain correlation 
functions for the free case g = 0, 

D( x - y, t I - t2) 

= (4o(x, t,)d~(y, t2)), 

f fm_in(t' t2) 
= 2  (dx,)(dyO d ' rG(X-Xl ,  q - r ) G ( y - y , ,  t 2 - r )  

• f (dz,) Kx, z,([])Ky,z,([~) 

Taking into account the obvious equalities 

I (dz,) Kx,~,(Tq)K~,y~(D)= f (dq) e-'q~'-Yl~ V(-q212) 

. - / -  , x = : r  7 

Fig. 3. Langevin tree rules for the nonlocal stochastic quantization theory. 
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and 

we get 

f?~n(q dr exp{ - ( /1-  r)(P 2+ m 2) - ( /2  -- T ) ( P  2"q- m2)} 
t 2 ) 

e x p { - I t , -  tz[(p2+ m2)} 
2(m2+p 2) 

f V(-p212) 
DE(x--y)  = ,,-,,21im D ( x - y ,  t, - t2) = J (dp) m2+p 2 e -'p(x-y~ (2.17) 

which is just the nonlocal Euclidean Green function (1.3) for the scalar 
theory. Here we have used the definitions 

Kxy(l-]) = f (dp) e -ip~x-y) K(-p212); V(-p212) = [K(-p212)] 2 

This result also may be obtained by using the diagrammatic representa- 
tion for the Langevin system. Thus, as a specific example, the zeroth-order 
momentum-space nonlocal two-point function shown in Figure 4 contains 
two local Langevin Green functions in the combination 

Dt12(p) = R V(-p212) f ~loo dt3 I f~  dt4 G13(p)a24(P)6( t3-  t4) 

V(-p212) 
- e Iq--t21Ap = D(p)  exp(-I t , -  tzlAp) (2.18a) 

A 

where we have introduced 

D(p)  = V(-p2t2) /A , ,  a ,  =- p2+ m ~ 
(2.18b) 

Gq(p) = | t , -  t;) e-%-gG 

The result for the nonlocal free propagator is therefore 

(q~(Xl)t~(X2)) (0)= f (dp) e -ip(x, x2) D~0(p) = f (dp) e -ip(x,-x2) V(-p212) 
�9 m2Wp 2 

o r  

(&p,&p~)(o)_ V(-P~ 12) gd(p~ +p2 ) = D(p,)gd(p~ + p2) (2.18C) 
Ap, 

Fig. 4. 
w / x  

Langevin line with a contraction in the nonlocal ~, ~ .r ~  ̂
1 case. 
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where 

6d(pl+P2)=--(2rr)dtSd(pa+P2); th(X)= f (alp) fbpe -'p~ (2.18d) 

In general, each line with a cross (contraction) in a Langevin diagram is 
represented by a factor Dt12(p), which includes a factor V(-p212). In this 
connection, it should be noted that product of generalized functions Kzy (71) 
may be understood as a contraction operation only. For example, 

or 

etc. 

K{y(V]) = f (dz) K=(71)K~y(C]) 

[]2y ~- I ( dz) mlxzFlzy 

(2.19) 

(2.20) 

Fig. 5. Langevin three-point diagrams in the nonlocal stochastic case. 

For further calculation experience, we consider t~ 3 theory and calculate 
the nonlocal first-order three-point function (Figure 5). 

Let 
A ((a) = g053/3! 

In this concrete case, iteration solution (2.15) takes the form in the momen- 
tum representation 

&(x, t) = j (alp) e -ipx ~p(t) 

where 

~p(t)  = I (dx')fs 

I I g (dxI) dlt G(x'-xI,I'-I1) (dyl) gx,y,(F])'rl(yl,tl) 
- 2  co 

x I (dx2) fs dt2 G(x'-x2, t'-t2) I (dy2) Kx2y2([-])rl(y2, t2) } 
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To c a l c u l a t e  ~1) (Chptcbp2ckp3) . . . .  for  connected diagrams, we use the approxi-  
mat ion  

and the Gaussian noise proper ty  

(7/(x,, tl)~l(x2, t2)'q(x3, t3)~/(x4, t4)) 

= 416 d (xl - x2)6(t, - t2)t5 d (x3 - x4) iS(t3 - t4) 

+ t5 d (x I - x3)tS( t I - t3)t5 a (x 2 - x4)~( t2 - t4) 

+ t~d(xl --Xa)t~(t I -- t4)t~d(x2- X3)t~(t 2 -- t3) ] (2.21) 

After integration over ti and xi variables, we have 

,(1) 
(t~pl t~p2 ~Dp3) . . . .  

= - g  f dt, [ Gol( Pl) Dlol( P2) Dlol( P3) + Dlol ( Pl ) Gol ( P2) 

• Dto~(p3)+D~ol(pOD~o~(p2)Gol(P3)]6d(pl+p2+p3 ) (2.22) 

Taking into account  the explicit forms (2.18a) and (2.18b) for D~(p)  and 
Gq(p) functions and carrying out some algebraic operations,  we get 

FI (2.23) (6.16~,~ ~p~) = - g 3 

We note that in the presence o f  the form factor, the loop (Figure 6) 

(~bp)(~)=-�89 f dtl Gol(p) f (dk)Dl.(k)gd(p) 
g gd (p) 

= - -  - ~ p  f (dk) D ( k ) ;  D ( k )  = V(-k212)/Ak 

Fig. 6. Langevin tadpole diagram in the nonlocal ) 
stochastic scheme, p 

(2.24) 
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is not the proper vertex of (2.23) times a nonlocal propagator. This indicates 
some peculiar of the effective d-dimensional action of the theory, which 
will be discussed in Sections 3 and 4. 

3. NONLOCAL SCHWINGER-DYSON EQUATIONS 

3.1. Derivation of the SD Equations 

The regularized Schwinger-Dyson (SD) equations with meromorphic 
regulators were used in the stochastic quantization scheme due to Bern 
et al. (1987a, b). We generalize here their results for a wide class of nonlocal 
distributions, the Fourier transforms of which are entire analytic functions 
of the type (2.9a). It is shown that a simple d-dimensional SD formulation 
depends crucially on the Markovian property of the scheme at the stochastic 
level. It turns out that this property does not change in our case. 

We begin with the Langevin system (2.10) and (2.12). Let F[~b] be any 
equal fifth-time functional of the field ~b; then its ~ average evolves in fifth 
time according to 

(dF[~] ) ,  ( I  (dx) C)q)(x,t) 3F[ek]~ 
dt = O ~  ~-~ / .  (3.1) 

To transform this equation, we use the local white noise identity 

6 

which expresses the Markovian property of our scheme and is easily verified 
by differentiating exp[-�88 s dr (dx)~2(x, r)] with respect to ~(y, t). Thus, 
multiplying (3.2) by any functional F(~b) and integrating it over rl, we get 

a 

Integration by parts in r/gives 

dn exp - a  dr (dx) n2(x, r) n(Y, t ) - 2  an(y, ) 

from which follows the formal definition 

~l(y,t)=2&l(y,t ) 2 (dz) a~l(y,t) &b(z,t) (3.3) 

for any functional F(OS). Now it is necessary to define &b(x, t)/3~(y, t). 
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For this, using the Langevin equation and its free solution, we obtain 

6~(x , t )  3 f (dx , ) f f  dt, G(x_x,,t_t,)f(dz)K~,z([])rl(z,t, ) 
6rl(y , t) 3~7(y , t) co 

=f(ax')s dCf(ap)e "X-x"'c,,(p)Kx,y(S)3(,-c) 
= O(0)K~y(D) = �89 (5) (3.4) 

Further, according to equalities (3.3) and (3.4), we get a chain rule into 6/64< 

f (dy) K~y(D)rl(y , t) 

=2 f (dy)Kxy(D) I (dz) 6~(z, t) 3 
6~(y, t) 64,(z, t) 

= (as) K . ( D )  (az) K . ( D )  ~4,(z, t) 

= (&) K~(D)  64,(z, t-------~ (3.5) 

where, by definition (2.19), 

K~y(C]) = [ (dz) K~(D)K~y(V]) 
J 

o r  

f (dz) Kxz(E3)Kzy([~) = J (dp) V(-p212) K2y(D) 
r 

e-ip(x-y) ~__ 

Finally, taking into account (2.10) and (3.1)-(3.5), we arrive at the 
definition for the regularized SD equations 

~--~x)/ ,  (3.6) 8r 
or, at equilibrium, 

6 - - ~ / = 0  (3.7) &~(x) 
Further, following Bern et al. (1987a) and ehoosing 

F(,~)= exp{f  (dx) Y(x)c~(x)} 
we can easily obtain the Schwinger form of these equations, 

I (dx) J(x)[-6~(x) ~,~8/~j+I (dy) K2y(D)Y(y)]Z(y)=O (3.8) 
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where Z(J)= (exp{~ (dx)J(x)6(x)}) is the vacuum-to-vacuum generating 
functional. 

As shown below, the Schwinger-Dyson equations, plus some boundary 
condition which requires the permutation symmetry of Euclidean Bose 
time-ordered product, e.g., 

(3.9) 

are equivalent (at least in the weak coupling limit) to the Langevin formula- 
tion at equilibrium. 

It is convenient to study the SD equations (3.7) in momentum space. 
Making use of the definitions (2.18b) and (2.18d) and the simple relations 

a =f(dp)  e+,',~ 8 .  66",=gd(p+k); 
a6(x) 86",' a~ 

f �9 6F(6",) aF(6)  = (dp2) e ",2x 
a6(x) J 86,~ 

we have the following identities: 

(dx)(O2-m2)6(x) a6(x) (dp)(p2+m2)6",6F(~) 84)', 

f (dx)(dy) K2y(~) 62F(6) - f ( a p ) V ( - p 2 l  2) 82F(6) 
86@) 86(x) 86~ 84_', 

etc., from which it is easily verified by a functional chain rule that 

= (dp) V(-p212) 84,, a6_----------p 

g IN-, ( N~I ) 8~p) (N-I)!  i=,rI (dk,)(dp)g" p -  ,=, to, 6k,'''6kN_, (3.10) 

where we have chosen the interaction 

A(6) = g 6 N / N !  

As a first trivial example, with the boundary condition (3.9) we compute 
the regularized free two-point function. Setting g = 0 and choosing F =  
6p,6",2, we find that equation (3.10) becomes 

(6p16",~) ~~ gd(p~+p2)D(pO; D(p) = V(-p212)A; ~ (3.11) 
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This result is the correct nonlocal free propagator, in agreement with the 
Langevin result (2.18c). 

3.2. Iterative Procedure for the Nonlocal  S D  Equations 

To compute some n-point functions for any desired order of coupling 
constant g within the SD equations, the iterative method of equation (3.10) 
should be given. This procedure was used by Bern et al. (1987a-c). In our 
case with nonlocal form factors, their result is automatically carried over. 
For example, it is not difficult to check in analogy with the formula (3.11) 
that (4~p,~bp2... 4~pN) (~ yields the usual Wick expansion, as products of 
nonlocal free propagators (3.11). Moreover, in the first order of g it corre- 
sponds to the regularized vertex 

F ( p 1 , . . . ,  pN)= (~p, " ' "  ~bp~) <1) 

( ~ l P i )  N ( -g )~ ' f f : l [D(Pf l ] - I  (3.12) = 8"1 I~ D(pi)  N 
"= i=1  ~.j=lApj 

For N = 3, the result agrees with equation (2.23). 
The iterative chain rule may be obtained using equation (3.10). To 

illustrate this, we consider ~b 3 theory (N = 3). First, setting F(~b)= 6p in 
equation (3.10), we get 

(~bp)=-~ AZ (dkl) (dk2) g d ( p - - k l - - k 2 ) ( q ~ k , C ~ k 2 )  (3.13) 

In turn, (~bk1~bk~) is given by the formula 

(~bk,6k) = gd(k ,+k2)O(k l )  2(Ak +Ak2) (dq,) (dq2) 

x [ga(k, - q l -  q2)(q~k26q, qbq2) 

+ g'd (k2 - ql - q2)(ff)k, ff~q~6q2)] (3.14) 

Further, assuming F(~b)= ~be,~be~bp3 in equation (3.10), we obtain 

[ 2gd (Pl +P2) V(-p~t2)(6p~) ,. ] 
(6pl~.)p2ff)p3) = / + C y C l i C  perm in {p} 

L A,, + + A,3 J 
g 1 

f (dkl) (dk2) 
2 Ap, + Ap2 + Ap3 

x [ga(p, _ kl _ k2)(qbp2~p3qbk,~bk2) 

+cyclic perm in {p}]+ . . .  (3.15) 

where  the definition (r +p2)Ap, V(-p212) has been used. 
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Using the zeroth-order result (3.11) for Dp, we can immediately obtain 
the first-order tadpole graph (Figure 6) from (3.13) and (3.14), 

gd(p) 
f (dk) D(k) (3.16) (G)"~- 2 g m 2 

in agreement with the Langevin result (2.24). After taking the next approxi- 
mation in equation (3.13), we find that expression (3.16) acquires the form 

g~gd(p) g 
(qbP)(2~=-2 [ - - ~ - p  I (dk,) D(k,)---~p f (dk,) (dq,) (dq2) 

(~k,G,6q)~ xXd(p--kl--ql--q2)~k +~-~_g,j 
Finally, in order to compute the O(g 2) one-loop contribution to the 

two-point function (Figure 7), we take into account the second term in 
(3.14) and put in it the disconnected part of (3.15) with 

~(0) 
( 6ql ~q2~kl ~k2) q,k 

= (~bq|4kl)(~q2~k2)'4-((~ql6k2}(4kl~q2) 

= P(q,)P(q2)[ gd (ql + kl) ge (q2+ k2) + gd (ql + k2)3 d (k, + q2)] 

where the subscript on the right q, k means that we keep only those 
contributions in which q's contract with k's. 

As a result of a little algebra, we obtain 

g2 P(p) f (dk) D(k)P(p-k)  (V-1A)k+(V-1A)p-k -~(V-1A)p  
I I (p )=  2 Ap J Ak'~-Ap_k'~-A p 

(3.17) 

which is the usual local loop when l~  0. 
Thus, the SD equations (3.7) or (3.13)-(3.15) may be solved iteratively 

in this manner to any desired order of g. However, the procedure is 
increasingly tedious. To simplify this prescription, Bert et al. (1987a-c) 
developed a systematic set of Schwinger-Dyson-Feynman rules instead. 

r 

Fig. 7. One-loop two-point function in the nonlocal stochastic scheme. 
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We mention that the construction of any expressions of the type of (3.17) 
according to these rules requires more effort than the usual Feynman 
diagrammatic correspondence. 

Finally, for further computational purposes we present here a concrete 
method for calculating the expression (3.17) the explicit form of which is 

g2 1 f (dk) 1 
U(p) -  2 (m2+p2) 2a  3rn2+k2+P2+(P-k) 2 

V(-P 212) V(- (p  2 -  k)2/2) V(-p212) V(-k212) 
x[" m 2---5-~p _ ~-- ~ + mZ+k 2 

(m2+p 2) V(-k212) V(-(k  _ p)2/2) ~ 
q (--m~ ~ + - ~ p  - k ~  J (3.18) 

First, consider the second term of (3.18) in the case of d =6 dimensions. 
By using the Mellin representation (2.9b) for V(z) and the general Feynman 
parametric formula 

fo ( ) h i .  . . . .  b nlX,, __ - - ~ l  ) - .. -. - ~ n  ) d o l l . . ,  d~ a l -- ~ ~ ~ r '  - = l 

. . . OLnn 
j = l  

we get 

g2 V(_p212) 7r3 1 f-~-'~ d~ v(~:) r ( - 1  - ~:) 
H(2)(P)= 4 (p2+m2)2(27r)62ia_~+,~ slnTr~: F ( 1 - s  c) 

12~f(~:) (3.19) 

where f(~:)= Ilo dx (1 -x ) - eA  l+e, and 

A = -�88 +p2x +3m2x + m2(1 -- x) 

Further, by shifting the contour of integration to the right, we can reduce 
this integral to a series; taking into account the main asymptotics, we have 

0"{_ 5 2 + 5  2 g2 1 [ ~  (gp ffm)v(O)ln212] I](2)(P) 2977.3 (m2+p2) 2 

t~= lim v(x)/(l+x) (3.20) 

where we have assumed that the function v(x) has zero at the point x = -1  
and V(-p212)[r2~ o = 1 for the external momentum variable p2. Moreover, in 
(3.19) we use the F-function properties 

F(l+x)=xF(x),  F(x)F(1 - x )  = 7r/sin 7rx 

The first and second terms in (3.20) correspond to calculations of residues 
at points ~:=-1 and so=0, respectively. It is clear that II(l)(p)=II(2)(p). 
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Similar calculations can be carried out for the third term in (3.18) and the 
result is reduced to the following formula: 

g2 t)(0) 12/.i, 2 
II<3)(p) = - 2 %  3 (mE+p2---- ~ In (3.21) 

In (3.20) and (3.21), v(0) = 1, which follows from the normalization condi- 
tion V(0) = 1, and ~ is an arbitrary parameter with dimension of mass. 

4. R E N O R M A L I Z A T I O N  P R E S C R I P T I O N  A N D  T H E  T H R E E -  
P O I N T  FUNCTION IN NONLOCAL SD FORMALISM 

A renormalization program in the regularized SD formalism as was 
first discussed by Bern et al. (1987a). For the nonlocal case, their result is 
immediately repeated. However, a significant difference appears when 
counterterms in the Lagrangian function are constructed. In the nonlocal 
stochastic theory counterterms are finite, since we do not assume l--> 0 at 
the end of the calculations. This means that the parameter l of  the theory 
remains e v e r y w h e r e l i n  particular, in its action. Thus, our scheme is an 
action regularization, because explicit divergence does not occur in the 
effective d-dimensional action of the theory and in the Green function 
expressions. 

For completeness, within the SD equations we present here a renor- 
realization procedure due to Bern et al. (1987a) for the nonlocal case. Thus, 
the nonlocal SD equations 

6So ( f (dx ) LS~-~ ) f (dy ) K2y([~ ) 8@(y ) ] 8@~x)) : 0  (4.1) 

involve the unrenormalized field &(x) and the bare Lagrangian 3?0, whose 
parameters we now denote as mo and go. The usual renormalized field is 
C~R==---z~l/2b, by means of  which the renormalized Green functions F(~bR) 
are constructed. Assuming that the SD equations homogeneous in 6/6#5, 
we have the nonlocal SD equations 

L &b~(x) - ~ I = ~  (4.2) 

where So = SR+ Sc-r is the usual textbook breakup into the renormalized 
Lagrangian and the counterterm Lagrangian. The renormalization procedure 
as usually formulated is based on the construction of the total Lagrangians; 
for example, in the case of &3 theory we have explicitly 

37R = 1,~R(-D + m2)4,R+ g 4'3 
.3,' 

(4.3) 
3?CT = �89 - a)6R(--iN + rnZ)6R+�89 g (Z~ - 1)6 3 

D'. 
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where 

g = Z34,/2go/Zg, m 2 = too-2 6m2/Z4~ (4.4) 

Following Bern et al. (1987a), we compute here three-point vertices in 
the nonlocal theory using the iterative method presented in the previous 
section for the SD equations. For this purpose, we continue the iterative 
procedure carried out in Section 3.2 up to the O ( g  3) order for (l~)p, ff)p2ff)p3 ) . . . .  �9 

After simple but tedious calculations, we have 

(~)p,C~pz~p3)=--~ p f (dk,) (dkz)~ - g g a ( p l - k l - k 2 )  
(2(Ak, + Ak2 + Ap~ + Ap~) 

x [4~1 + 2~2 + 4~3 + 2]~4(p2,~--) p3) + 2325(p2 ~--~p3) 

+L;,6(P2~--~p3)]+(p~'o-)p2)+(p~'~--~p3)} + M~+ M2 (4.5) 

]~i( kl , k2 ; p2, p3) 

where 

Here 

x [Aq, + Aq2 + Ak2 + Am + Am]-100i ; i = 1 , 2 , 3  

~j(kl ,  k2 ; P2, P3) 

= - ~  (dql) (dq2) (ds , )  (ds2)00jgd(p2 - q ~ -  q2) 

X[Aq,+Aq2 +Ak ,+Ak~+Ap3]- l ;  j = 4 , 5 , 6  

oq = gd ( ql -- Sl -- S2)( 4)s, 4),24)q24)k24)p24)p3) (~ 

0~ = 001(ql ~-~ k2); 003 = 002(k2"~-)p2) 

004 = gd ( q, -- S, -- Sz)( 4),, (% 6q2 4)k, 4)k2 4p3) (~ 

0" 5 = O-4(q, 0 k2) ; 006 = oos(k2~ 

(4.6) 
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In turn, the 

M 1 = 

M 2 = 

Here 
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terms Mi (i = 1, 2) are given by the formulas 

--gpgd(pl + P2+ p3) 

x{[V(-p~12)  II(p3)+(p2<--->p3)]+(pl~->p2)+(pl+P3)} 
k Ap2 -~- Ap3 

(--g)2p ;(dk,)(dk2)3/,{f (dq,)(dq2) 

x T2g d (p, - k 1 - k2)g a (k I - q, - q2) V(-q~ 12) 

x [ - g / ( d s , ) ( d s 2 ) ( H + H ( q 2 * - ~ p 2 ) + H ( q 2 ~ - - ~ p 3 )  

+ N + N (  q2 ~ k2) + N (  q2 ~ P3) + t + L( q2 ~ k2) 

+ L(q~.->pe))+(q,~-->q2)] q- (k l  <---~ k2) } 

H : ~a (q~ + k2)[Ae 2 + Am + Aq~]-,~a (q2 -- s, -- s2)(6~, 6~fiSp~6p3) (~ 

N = 28" (q, + p~)[,xk~ + a + G 3  -~ gd (q~_ s, - s2)(G, 4 ,~/ ,~ ,G)  (~ 

L= N(p2~--~p3); "Yl = [Akl+Ak2+mp2+mp3 ]-1 
"Y2 = [ Aq, + Aq~ + Ak2 + Ap2 + Ap3]-~ 

The main asymptotics of  (4.5) may be easily calculated by the same method 
as used in previous sections. We are interested only in divergent parts in 
the expression (4.5). For example, the term ]~4 has the form 

~4 8 ( m  2 2 -1 2 2 --1 --d = -- +P3) (m +P2) p3 (pl+Pa+P3) 

1 f V(-q212) 
x2(2m2+pZz+p23) _ (dq) m 2 + q  2 {[Aq+Aq_p2+Ap~+Ap3]-' 

- [aq + aq_ m + a,3 + 2Ap2] -1} 

where we have used the usual Wick expansion for o- 4 in (4.6) in accordance 
with (3.11). Integration over d6q is easily carried out by the same prescrip- 
tion presented for obtaining leading terms of the two-loop function I I (p )  
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' - 0 '  0 0 = ~." + ; x <  *t 5- )' < 

r ~J. 

. * , . > .  ( ~ , - > g ) +  

49  
~9 c9 

Fig. 8. Nonlocal  diagrams. (a) One-loop two-point functions. (b) "Pure"  three-point vertices 
that are infinite as l ~  0. (c) Three-point functions with a loop on the external lines. Cyclic 
permutations of the external lines must also be included. (a'), (b'), (c') respective counterterm 
diagrams. 

Table I 

Diagram Leading terms in sum of one-loop diagrams 

Fig. 8a 

Fig. 8b 

Fig. 8c 

g2 Io.l_z+(p_f +2m2) lni.L212]/(p2+m2) 2 

g3 
[(m2 + p2)(mZ + p2)(m2 + p2)] -1 In #212 

g2 
28~.3 [ (m2 + p~)(m2 + p2)(m2 + P~) ] -~ 

[ o.i-2 + (�89 + 2m z) In ix212 o'1-2 + (�89 + 2m 2) In tz2l 2 
x L m~+p~ + m2+p~ 

cr/-2 + (�89 2) In ~21~'] 
q m2+p2 ] 
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in (3.18). After some elementary calculations, the main asymptotics are 
reduced to the following formula: 

2973g2 ( m 2 + p 2 ) ( m 2 + p  2)(2rn2+p2+p23)-I [20"- - r l l~  2 -} s = p ~--~ • t ~-~ p2 + p~) + 7 m 2] In p,212 

The remaining terms in (4.5) are calculated in the same manner. According 
to Bern et aL (1987a), the results may be classified within the different types 
of diagrams shown in Figure 8 [for details see Bern et al. (1987a)]. 

Final results are given in Tables I and II. Comparing the sum of the 
loop diagrams in Table I with the sum of the counterterm diagrams in 
Table II, we determine the renormalization constants 

1 2 
= 1 +3  2 g-------3 In//,212 

2 
= 1 + 27-~3 In/z212 (4.7) z. 

2 
6rn 2 =28- ~ (o-1-2 +~ In/.~212) 

It is interesting to notice that the result of Bern et al. (1978a) is valid 
for any regulators V(-p212) if, in their final expressions for loop diagrams, 
the coefficients �89 2 and ln(A2//x 2) should be changed to ~r1-2 and -1n(/,212), 
respectively. 

The attraction of our approach is that the nonlocal scheme is unitary 
in the presence of the analytic regulator [for details, see Efimov (1985)]. 
In our case, supplementary singularities caused by regulators do not exist 
and the analytic properties of any diagrams are conserved at a finite value 
of momentum variables p2. In contrast, for meromorphic regulators like the 
Pauli-Villars regularization procedure, the analytic properties of diagrams 

Table II 

Diagram Leading terms in sum of counterterm diagrams 

Fig. 8a' 
Fig. 8b' 
Fig. 8c' 

- [6m2+ (Z~ - 1)(p2+ m2)](p2 + m2) -2 
-g(Zg - 1)[(m2 + p2)(m2 + p~)(mZ + p23)]-I 
g[(p2+ m2)(p2 + m2)(p2 + m2)]-~ 

[ Sm2 + ( Ze, -1 ) (  p~ + m2) t 8m2 + ( Ze, -1 ) (  p~ + m z) 

• p-] + ,,~ i,~ + m 2 
a,, 2 + (Z~ - 1)(p~+ m2)] 
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are broken, which leads to difficulties in the proof of analyticity and the 
unitarity of the regularized theory with these types of regulators. In the last 
case, one expects that unitarity is regained as the regularization is removed 
A--> cr by which, of course, singularities (poles) are displaced at infinity. 

5. NONLOCAL STOCHASTIC QUANTIZATION OF 
GAUGE FIELDS 

At first sight, the majority of physicists seem to think that the stochastic 
quantization method is little more than an amusing alternative to conven- 
tional Hamiltonian, path integral, and action formulations. It turns out that 
this method has given birth to a number of new ideas and is very useful 
for understanding many problems of field theory in light of its present 
developments. As mentioned by Bern et al. (1987b), these developments 
are Zwanziger gauge fixing (Zwanziger, 1981; Floratos et al., 1984), large-N 
quenching and large-N master fields (Alfaro and Sakita, 1983; Greensite 
and Halpern, 1983), stochastic stabilization (Greensite and Halpern, 1984), 
stochastic regularization (Bern et al., 1987b; Niemi and Wijewardhana, 
1982; Breit et al., 1984; Namiki and Yamanaka, 1984; Bern, 1985), the 
QCD4 maps which run in ordinary time (Claudson and Halpern, 1985; Bern 
and Chan, 1986), and numerical applications of the Langevin equation in 
lattice gauge theory (Hamber and Heller, 1984; Batrouni et al., 1985). For 
review see Namsrai (1986) and Migdal (1986), where earlier references 
concerning this problem are cited. 

To introduce nonlocality into the stochastic quantization formalism 
for gauge fields, we follow Bern et al. (1987b). Our procedure is very similar 
to theirs. However, our method is more general and deals with any form 
factor of the type V(-p212). 

5.1. Nonlocal  Langevin Systems for Gauge Theory 

The nonlocal Parisi-Wu Langevin system for S U ( N )  Yang-Mills 
theory in d dimensions is given by 

(x, t )+d~bZb(x,  t)+ f (dy) A.(x,'a t) 6S = - -  Kxy(A)-q.(y,ab b t) (5.1) 
6A~ 

where local noise satisfies the relation 

(rl~ (x, t)rlb~(y, t')). = 26abS.~8( t - t ' )6d(x--  y) (5.2) 

and ab Kxy(A ) is nonlocal distribution discussed in previous sections. Accord- 
ing to the equilibrium hypothesis, the nonlocal Euclidean Green functions 
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determined by vacuum expectation values of products of fields 

(F[a( ' )] )o=(a~,(x , )  "'" a~,,(x.))0 = I] Dv~,~(xi-xj) (5.3) 
i ~ j  

in the usual nonlocal quantum field theory (for example, Efimov, 1985; 
Namsrai, 1986) are now given by 

(F [A( . ) ] )  ~- lirn (F[A( . ,  t)]) ,  (5.4) 

where F[A] is any equal fifth-time functional (product) of the gauge field 
A~.('q). In particular, the nonlocal propagator for the photon field A~(x) 
in (5.3) takes the form 

_ i&,~ I d4p e-'P(~ y) V(-p212) D,~.(x - y) = (01T(Ar (x)A~(y) )[O) - ~ p2 

in accordance with the nonlocal theory. Here, the form factor V(-p212) is 
given by formula (2.9b) with rn = 0. 

Our notation in (5.1) is 

S =~ f (dx) F ~ ( x ) F ~ ( x )  

a a ~ a a  , ~ a b c - - b  a c  F.~(x)  = O . A ~ ( x ) - o ~ a . -  gj  .a~% 

In this paper we use the following covariant derivative: 

t, a b c ~ c  da~ b = t~abOt, q- gJ A . ,  (dx) ~ ddx 

In (5.1) we have chosen to add a Zwanziger gauge-fixing term d~bZ b, which 
we will specify as a Z  a = OA a for computational purposes. As shown below, 
gauge-invariant quantities do not depend on the gauge fixing for the nonlocal 
case. The nonlocal distribution ab Kxy(A) is a function of the covariant 
Laplacian 

so that 

f 
a b  J (dz) (d~)~ (d.)~y ~ A x y  

a b  (d~)xy = d~b(x) 8d(x --y) 
(5.5) 

b a  a b  Kyx(A) = Kxy(A) 
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In the weak coupling limit the Langevin equation (5.1) has the 
equivalent integral formulation 

a = I ~  G ~ ( x - y , t - t ' )  a~(x,  t) dt' (dy) ~b 
oo 

Y~(y, t') + ( dz ) bc c x W~(y, t') b Ky~(A)*/~(z, t') (5.6) 
OL 

where 

ob f G.~(x - y ,  t -  t') = 3~bo ( t -  t') (dp) e -ip(~-y) 

x [ T ~ ( p )  e P2('-"~+Ln~(p) e P2('-r'~/~] (5.7) 

is the Langevin Green function, which is determined by usual procedure: 

a b  G ~ ( x ,  t)= 60b[ Tu~GT(x, t)+ L,~GL(x, t)] 

Here Tu~ and L ~  are the standard transverse and longitudinal projection 
operators, respectively. In the momentum space they take the form 

T~(k )  = 6~ - k~k~/k 2 

L ~ ( k )  = k~k~/k 2 

In (5.6) we have defined the interaction terms 

b b c d  c d c d c d (O~At~)A~] - (O~A~)At~ + W ~ = - g f  [Ot3(A~A~) 
+ gZf bdc~c c n e A n  A e A d . ~ , ~ , ~  (5.8) 

Y~ ~ gfb~d aa~(oa~) (5.9) 

The former arises from the action and last term is due to the Zwanziger 
one. In expression (5.6) we have also employed the technical device of 
choosing to = -o% so that the system has equilibrated at any finite fifth time. 

A method of form-factor expansion in powers of the coupling constant 
plays an important role in the proof  of gauge invariance of the nonlocal 
stochastic quantization theory. As a first step in this expansion, we write, 
in accordance with Bern et aL (1987b), 

A aby : t~ab[--]xyl2 q_ ab 2 ab g(F,)xy + g (r2)xy (5.10) 

where the regulator "vertices" F 1 and F 2 a r e  defined as 

a b  2 a b c  x c c x d ( r , ) ~ y = l f  (O~A~(x)+A,(x)O,)6  ( x - y )  (5.11a) 

a b  2 arnn  n b e  rn e (FE)~y=l f  'f A ~ ( x ) A . ( x ) 6 d ( x - y )  (5.11b) 
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In (5 .11)  the  der ivat ives  0~ act on  every th ing  to the  right. Further,  for any  
distribution of the type o f  (2.5) we  may write down the following expansion 
rule: 

ab oo Cn ( A ab'~ n 
Kxy(A) = .:oE (-~n)! , -xy.  

oo C 
= ~ -n ~abl2n[-- ] n 

.~0  ( 2 n ) !  v ~ xy 

cnl 2n-2  oo 

[ +g (F2)xz][-~zy n +.:oZ (2n)! j(dz)Eg(r'):~z 2 ob ~  

C. 12.-4 _[ 2 ~c cb . - 2  +�89 .~o ~ - (dZl)(dz2)g (F,)xz,(F)z,z2l-qz2y n(n - 1) 

+ �9 �9 �9 (5.12) 

= 6"bKxy(E3)+ g f (dZl) (dz2) 

O) F ~b x [K~ , (F -q ) ( , )  .... Uz2y([-]) 

"t- Hxzl(["~)(F1)ablz2K::;,(E~)]-I-g'~2 f (dz1) (dz2) 
(1) ab ab (1) x [Kxz,(D)(F2) nz~y(~) + H=,(D)(F2) .... K~y(D)] 

Jl-~ I (dZl)" " " (dz4)[K(x2)l(F~)(rl)a:z2Hz2z3(Fq)(rx)Cz:zaHz4y(F-q) 
ac (2) r cb 

~ - - H x z I ( ( ~ ) ( F 1 )  K Z 2 Z 3 ( [ ~ ) ( 1 )  . . . .  H Z 4 y ( [ ~ )  
ac cb (2) 

+ n x z l ( [ ~  ) ( F I )  . . . .  Hz2z3( [--] ) ( F 1 )  . . . .  n z 4 y ( [ - ]  ) ]  - t - . - -  

Here the Fourier transforms of generalized functions Ki(D) are given by 

l f - ~ - ' ~  ), K(-p212) = ~  a-~+i~ sm ~-r 

K(')(-pZl2)=~i p - ' - i ~ d , ~  ,(p212)e (5.3) 
,l-[3+icc s i n  q'g~ 

- /3- ico 

1 I d~~ (~ - l ) ( 12P2)  < K ( 2 ) ( - p 2 1 2 )  = 2~ J-~+i~o s i n  'n'g 

and for the operator Hxy(Tq) = (E3fl2)-16d(x--y) we have 

Hxy(~) =-I- (dp)H(p212) e - i p ( x - y )  
i i  

(5.14) 
1 

H(pZl 2) _ p212 
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With the form-factor expansion (5.12) for any desired order it is not 
difficult to iterate the integral equation (5.6) for the Langevin field 

c o  

A~E'q]= • g'A~")[r/] (5.15) 
m = 0  

up to arbitrarily high order as well. As an example, the result for the form 

(5.16a) 

A~)~ t) = f '  dt' (dy) G~(xab _ y , t _ t ' )  
d -  0(3 

x w~ tY, t ' )+lY~)b(Y,  t')+�89 (dz)[K(1)(~)r,(A~ 
OL 

+ H([3)F1(A~ t')} (5.16b) 

t)= J-' dt' (dy) A(2)a(.. "'~' o~ G~(Xab --Y, t -- t') 

• { W~)b(y' t ' ) + l  Y~}b(Y' t')+ (dz) 

• {k[K~'(N)F~(A~'))H(D) + H(~)FI(A~' )K")(~)]  

+�89176 + H(D)F:(A~~ 

+ ~[ K~2~(D )FI( A ~~ H (D )FI( A ~~ H ([Z ) 

+ H(N)F,(A~~176 

+H(D)F1(A~~176 t')} (5.16c) 

Here, the product of the operators in (5.16b) and (5.16c) should be under- 
stand as a contraction operation between them [see formula (5.12)]. 

5.2. Langevin Tree Graphs 

We note that more useful at arbitrary order is the equivalent description 
in terms of Langevin tree graphs, which are easily derived from equation 
(5.6) or (5.16). For this purpose, the tree-graph expansions of the form 
factor should be given, as done by Bern et al. (1987b) for the concrete 
regulator [R(A)]x~y b = ~ a b [ 1  --  A ~  2 -1  l ]xy. In the nonlocal theory the Langevin 
tree graphs through O(g 2) are shown in Figure 10. These diagrams may be 
constructed to all orders using the Langevin tree rules given in Figure 9. 

factor K(A) in d = 4 dimensions takes the form 

(O)a  . b 77 ~(z, G ~ ( x - y ,  t - t ' )  (dz) K~y(7-1) t') A~, (z, t)= dt'(dy) ~b 
oo  
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t 4 a 
~;-- ~ 

f 

Vev,~(ce~ 

~,~o,=..= = ~,~..  = vv=,~-.--- = ~ - - 1 .  

~ -" -'-'X - _ _ ~ =  - - - - - " X  ~ ~ ;  

Wp ec (p4 p~,p~); 
g 

9e_ f o e,,lffa. r ga.. 
~ ~ =-~-  L ( % ? v - % ~ ) "  ' (~4"~- 

~ad,.c~n ~ a~c d, 

~  _ _ L  . . . . .  J - 

~" ~ -  t = ,~.~~ (~',-~)~r~,~ , ~  ~ ' 

Prop=~a~-or-~: 

/, u 
a g-* r 

a P *  
~, c_. .__ ~ "Q = 

~p v 
Fig. 9. Langevin tree rules using nonlocal form factors. 

As a trivial example,  we obtain the zeroth-order  two-point  function. 
From the solution (5.16a) it follows in accordance  with the local noise 
proper ty  (5.2) 

f V(-p212) 
.._~,ga(~ ~,~, t ) a ~ ) b ( y ,  t)) = (3 ~b (dp)  e -ip(x-~) [ r . ~ ( p )  + aL~.,(p)]  p2 

(5.17) 
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Y 
q . j t r o v v ~  

i -  

-- -e § la,uv-- - ,~ 

- - - - a l  - - - - - /  

t I 
~ wu- - -  ^ + t0Juaar--'-auo.an:~ § . ~  

Fig. 10. Langevin tree diagrams through O(g a) in the nonlocal stochastic scheme. 

or, using the Langevin tree diagram shown in Figure 11, 
ab D~(t~, t2; p) 

I~Io0 f]2 ac G~p(p, t2_t4)6(t3_t4)K2(_p212) =-- 2 dt3 dt4 G . p ( p ,  tl - t3) bc 

V ( - p 2 1  z) =~ab[T~,(p ) e-P21,l-t2[.+.ceL~(p) e-p21q ,~l/~] p2 

T h e  r e s u l t  f o r  t h e  n o n l o c a l  f r e e  g l u o n  p r o p a g a t o r  is j u s t  (5 .17) .  O t h e r  f r e e  

j - 

Fig. 11. A simple contraction for the nonlocal theory with form factor V(-p212). 
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nonlocal Green functions are constructed according to the usual Wick 
expansion in terms of the result (5.17). 

In the next section, we apply these Langevin equations and their rules 
for the nonlocal stochastic quantization theory to the computation of the 
one-loop gluon mass. 

6. VANISHING GLUON MASS IN THE NONLOCAL 
STOCHASTIC QUANTIZATION THEORY 

Verification of gauge invariance in the nonlocal stochastic quantization 
scheme with arbitrary form factors is crucial for its further development. 
We will verify in this section that the QCD4 gluon mass remains zero at 
the one-loop level, with any form factors V(-p212) or K(-pZl2). Our 
approach to this problem is as follows. First, we construct expressions 

II~b(X - y )  : (AJ~(x ,  t)AT)b(y, t))~ 

and 

N~(xab _y )  = (A~a(x,  t)AT>b(y, t))~ 

by using equations (5.16). Second, with these formulas, we sketch corre- 
sponding diagrams. It turns out that there are 47 distinct Langevin graphs 
in the two-point function at order g2, where diagrams trivially related by 
symmetry are not included in the count. As a particular case of Bern et al. 
(1987b), it is seen that only ten make nonzero contributions to the mass 
renormalization, while only two contribute to the wave function and gauge 
parameter (a )  renormalizations. 

Following Bern et al. (1987b), we have found it convenient to group 
the 47 diagrams into four classes (see diagrams sketched in Figures 12-15) 
of which only the first class contributes to the wave function and ~ renor- 
malizations, and only the first two classes contribute to the mass renormaliz- 
ation. The third class contributes only to the finite~ part of the vacuum 
polarization, which will not be considered in this paper, while the diagrams 
in the fourth class vanish identically. 

The structure of the diagrams shown in Figures 12-15 is similar to 
those considered by Bern et al. (1987b). Therefore, we do not discuss them 
in detail and indicate only some of their peculiarities. For example, the 
diagrams shown in Figure 12 contain only (Zwanziger gauge-fixed) Yang- 
Mills vertices and no form-factor vertices, while the diagrams in Figure 13 
contain at least one F~ or Fz regulator vertex, and provide the additional 
gluon mass contributions needed to cancel the contribution of the ordinary 
graphs (Figure 12). For this class of diagrams, contributions to wave function 
or c~ renormalizations are absent. The diagrams shown in Figure 14, also 
contain regulator vertices, but contribute only to the finite part of the vacuum 
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r .  

Fig. 12. "Ordinary" nonvanishing Langevin diagrams in the nonlocal stochastic quantization 
scheme. 

polarization. Finally, the group of diagrams in Figure 15 vanishes identically. 
Some (the tadpole loops) vanish as usual b y f  ~bc antisymmetry. The remain- 
ing diagrams vanish due to the (fifth-time) retarded property of the Langevin 
Green functions, which contribute a factor of O(t~ - t2)O(t2- tl) = 0 to each 
diagram. 

In order to compute explicit contributions to renormalization of the 
mass correction due to the diagrams shown in Figures 12 and 13, we study 
expressions ab I I ~ ( x - y )  = (A~)~(x,  t )A~)b(y,  t)),. Thus, taking into account 
the formula (5.16b), it is easily seen that explicit contribution from the 

- - C 2  - 

c) 

Fig. 13. Diagrams with nonlocal regulator vertices that also contribute to gluon mass. 
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F i g .  14 .  D i a g r a m s  w i t h  nonlocal regulator v e r t i c e s ,  w h i c h  are finite a s  1--> 0 .  

diagram of Figure 12c is calculated by using the formula 
ab I I . ~ ( x - y )  = (E~(x, t)yb(--y, t)). (6.1) 

where 

:~a.(x, t) = dC dr, tit2 (alp,) (ap2) (de3) e -';'x G . ~ , ( p l .  t -  C) 
o o  o o  

• Ge~"~(p2. t ' -  tl)K (-pZt2)sa (p, +P2 + P3) 
Waler ," c s  x { ~,t3otP~,P2,ps)Goo(P3, t ' -  t2) 

2 2 1 a es t 2 2 (1)  2 2 •  )-~F,/. ,o~8(t - t2 ) [H(p , l  )K ( -ps l  ) 
+ H(p~12)K"~(-p~12)]}ng(p2, t~)n~(p3, t2) 



Nonlocality and Stochastic Quantization of Field Theory 

~ -- 0 "- --J/JI/l~ 

�9 
I 5 ~ I ! '  I 

751 

Fig. 15. 

�9 
I 

Diagrams that vanish identically in the nonlocal stochastic scheme. 

w a l e c  r a es  Here the explicit form of  the vertices ~,~o(P~, P2, P3) and F~,p~ is sketched 
in Figure 9. The majority of  terms in (6.1) correspond to some finite and 
zero diagrams in Figures 14 and 15. Further, according to the formula (5.2), 
we make a noise contraction in (6.1), perform the fifth-time integrations, 
separate terms giving contributions in accordance with the diagram of Figure 
12c, and integrate over the momentum variable with form factor V(-p212). 
Thus, after some tensor algebra, we obtain the explicit leading value for 
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this diagram near p = 0 as 

where 

Dineykhan and Namsrai 

I I~b~(P)=-- f~"~f  b~" g2 16r 2 A,~ (p)(~at3~p 2) In 12p. 2 

A ~(p)  = [ T~I3(p) + a L ~ ( p ) ] p  -2 

Truncation near p = 0 is accomplished by removal of  the factor a (p).  We 
see that this term contributes to the wave function renormalization only. 
Now we study diagrams which give contribution to the gluon mass renor- 
malization. 

Contributions to the mass renormalization due to the diagram of Figure 
12a arise from the contraction result between the second term of (5.16c) 
and A ~  )b in (5.16a): 

a b  a a  l 'I2.~(p) = dt' dt 1 dr (dp2) GSd(p  , t - t ' ) O ( t ' -  t i ) O ( t ' -  r)  
o o  oo  o o  

k m  e b  t t p - -  x { 8  8 Ao,o~(p2, t,)A'o3~(p, t'-- r) 

~ m e ^ k b  - -  t / t t -  t ' +o o ao,o3tp2, ~)zXo~(p, t ' -  r) 

~ m b ~ k e - -  ! . t t - -  t t e  - -  + o o ao,~tp, 7)Ao2p3(p2, t2) } 

X V( -p~ l  z) V(-p212) UZ.,~ke 
vV [ 3 p l p Z p 3  

where 

k~,v=(p , t ) =  Tp,p~_(p) e-'V2+ Lp,p=(p) e -tvV~ 

and W a,"ke is presented in Figure 9. After an elementary calculation, we 
~ P l P 2 P 3  

get 

~,.. b.~. 2 3+a _I V(-q212) 
II~b~(p) = - - f  f g Aut~(p)At3~(p)----~--3 _ (dq) q2 

The infraviolet divergence in this term is caused by the zero mass of  the 
gluon field. Assuming q 2  q2+e,  we obtain 

II2~.~(p) - -  �9 (6.2) = f  'f  g A~t~(P)At3~(p) 12 

Here for S U ( N ) ,  f~r. . fbm. = 8~bN. 
NOW we calculate corrections to the gluon mass renormalization due 

to the diagrams shown in Figures 12b and 13a, which are calculated by 
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using the contraction of first term in (5.16c) with A~)b(x, t). The correspond- 
ing expressions take the form 

II~,~(p) = 16 f ' ~  d t ' f~dh (dp l )  V(-p212)V(-(p-p,)212 ) 

x @(t - t')O(t'- tl)~)(t - tl)A',,~(pl, t ' -  tl) 

• A~,(p, t - t')A~,~(p,, t - t,) 

• a ; ,~ , (p  - p , ,  c -  t,) w~;,%,(-p, p - p , ,  pl) 

w r e n s  / • ~p,a~(-Pl, Pl -P ,  P) (6.3) 

and 

f ~q~q~(a -3)V(-q212)K(-p212) l-I~=(p) = 2926~Nl 2 (dq) ( 2q 4 

x [H(q212)K~')(-p212) + H(p212)K~l~(-q212)] 

+ 4q~q~, q2 V(-P2F)K(-q 212) 

• H(q212)K~')(-q~l~)} A~A,(p)A~(p) (6.4) 

respectively. In (6.3) integration over fifth-time variables should be carried 
out, after which this expression is reduced to the analogous formula for 
I I , ~ ( p )  in (6.4): 

_ ab 2 [5 3a ]  f V(-q212) 
n ~ = ( p ) - ~  Ng A~(p)AA,~(p) -4+4 6~, (dq) q2 

=6abNg2A (p)Aw(p)[5+3a] O" 1 
[4  4 .] ~5 167r2 (6.5) 

By definition (5.13) for the form factor Ki(-pZl2), it is easily seen that first 
term with K(1)(-pZl 2) in (6.4) goes to zero at the limit p2---> 0 and the main 
asymptotic of its second term is constant, so that third term gives the 
following leading term: 

I I ~ ( p )  16~" 2 A (p)A (p) -- (6.6) 
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Analogously, contributions to the mass renormalization in QCD4 due 
to the diagrams shown in Figures 13b-13d are calculated by using contrac- 
tion of third, fourth, and fifth terms in (5.16c) with A~)b(x, t). The corre- 
sponding result reads 

aSNg2 
II ; '~(p) = 16r ~ A.~(p)A~(p) V(-p212)H(p212) 

l [ w ( 2 )  w(-2) f =t3-;~ w(~:)  F(-~)  ] 
x ~ ~ 2i J-t3+,o~ d~Zsi--~sc F ( - ~ -  ~) e~12~ (6.7a) 

rs g Fw(-=)l 
I I ~ ( p )  16~r = A,.(p)A.~(p) L 2/= j V(-p21=)H(p21 ~) (6.7b) 

~ a S N g 2  
I I ~ ( p ) - -  16~r 2 A~(p)A~(p)V(-p212)H(p212)w(-2) 12 (6.7c) 

] ( -~- '~ w(~) F(-~:) 
•  / 2i j_~+io~ n~-s ~ F(2-~:) e~12~ ds r 

In expressions (6.2) and (6.5)-(6.7), truncation near p = 0 is accomplished 
by removal of the two factors A~ (p); all resulting sums in the contributions 
of these diagram are zero, so the gluon remains massless in this order for 
the nonlocal stochastic quantization theory with arbitrary form factors. This 
generalizes the regularized scheme proposed by Bern et al. (1987b). 

Thus, the nonlocal method presented here for the Langevin and Schwin- 
ger-Dyson formalisms of stochastic quantization gives ultraviolet finiteness 
to all orders for gauge theory Green functions in d dimensions and ensures 
its gauge invariance. The latter is achieved by using the covariant Laplacian 
function (in which the gauge-fixing term is absent) in the construction of 
the theory. In our case, the nonlocal distribution Kxy(D) is translation 
invariant and so a gauge-covariant parallel transport of the local noise 
guarantees the gauge covariance of the regularized Langevin system under 
the local d-dimensional gauge transformation [for details, see Bern et al. 
(1987b)]: 

A~(x, t )~Ob(x)Ab(x,  t) 

n~(x, t)=>aa~(x) b n,~(x, t) 

ab aa' bb' a'b' K x y ( A ) ~ a  (x)• (y)Kxv (A) 

where s ~ SO(N 2- 1) is in the adjoint representation of SU(N). 
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7. SCALAR E L E C T R O D Y N A M I C S  

For concrete computational purposes, we present here the construction 
method of the electrodynamics of charged spinless particles and illustrate 
the extension of the scheme to include matter multiplets. As in Yang-Mills, 
the basic idea is that gauge invariance is maintained by choosing each form 
factor as a function of the covariant derivative in the relevant representation. 

The nonlocal and Zwanziger gauge-fixed Langevin system for scalar 
electrodynamics (SED) takes the form 

/lu(x, t ) = -  6--~S (x, t)+O,Z(x, ,)+ f (dy) K~e(~)~7~.(y, t) (7.1a) 
6A~ 

(b(x, t ) = -  6__ff_S (x, t)+ ieeb(x, t)Z(x, t)+ f (dy)Kxy(A)~(y, t) (7.1b) ~6" 

~*(x , t )=-~-~(x , t ) - ie4)*(x , t )Z(x , t )+ (dy) Kxy(A*)rl*(y,t) (7.1c) 

where local noises satisfy the usual relations 

(rl~(X, t)'O~(y, t ' ) )=26,~( t - t ' )~d(x--y)  (7.2a) 

(~*(x, t)rl(y, t'))= 26( t -  t')6d(X--y) (7.2b) 

Here 
f. 

S = J (dx) [~F,~F~+J(O, - ieAj,)OJ z] (7.2c) 

Euclidean action of SED constructed by using local fields is the usual 
A,(x, t) and ~b(x, t). In contrast to nonlocat quantum field theory (Efimov, 
1977, 1985), the interaction Lagrangian in (7.2c) is local. The appropriate 
covariant Laplacians for the charged scalar fields are 

Axy = f (dz) (D~)x~(D~)zy 

(D~,)xy = (a 7, - i e A ~ ( x ) ) 6 a ( x - y )  
(7.3) / -  

a*y = J (clz) (Dt,)xz(D~)zy* * 

x (D,)xy = (O r + ieA~(x))6 d (x - y) 

and we will choose aZ = O. A as above. 
Further, to check the finiteness and gauge invariance of the system, we 

compute, as in Section 6, the d = 4 one-loop photon mass using Langevin 
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techniques. We first need the integral form of the Langevin system 

A~(x,t)=f(dy)f~ dt'G~(x-y,t-t') 
[-ie(a*(y, ' ~ t )(0~ -Ov)cb(y, t') -2e2th*(y, t')th(y, t')Av(y, t') X 
L 

x [- ieA.(y ,  t') O.4)(y, t ' ) -  ieO.(A.(y,t')4(y, t')) 

1 
+ ie-- O(Y, t') O.A.(y, t') - e24(y, t')A.(y, t')A.(y, t') 

Ol 

with a similar equation for 4~*. Here 

G.~(x-y ,  t - t ' ) = O ( t - t ' )  f (dp) e - i p ( x - y )  

x[T,~(p)  e-P2<'-t')+L,~(p) e -p:<'-'')/~ (7.6a) 

G ( x - y ,  t - t ' ) = l g ( t - t ' )  f (alp) e -ip<x-y~ e -<p2+m~)<t-c) (7.6b) 

are the photon and scalar Langevin Green functions, respectively. 
The first step in a weak coupling expansion of (7.4) and (7.5) is the 

expansion of the charged scalar form factor to the desired order, which is 
given by formula (5.12) in Section 5. There g--> e, 

ab (F1) xy ~ (Fl)~y -- - i (O~A,(x)+A~(x)a~)Sd(x-y)l  2 
(7.7) 

ab (F2) xy ~ ( I ' 2 ) x y  : - A ,  (x)A~ (x) ~ d (X -- y) 12 

should be changed. As usual, in (7.7) the derivatives act on everything to 
the right. This expression may be continued to all orders as shown in Figure 
16. In the figure, in accordance with the diagrams of Figure 9, each specific 
line corresponds to the form factors K, K (~), K (2), and H(p212), and wavy 
lines correspond to gauge fields, while the three-, four-, and five-point 
vertices represent F~ and F 2. The heavy arrows denote the retarded property 
of the Langevin Green functions, while the thinner arrows track the direction 
of the charge flow on scalar lines 
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". 

F i g .  16 .  

"t"  

Expansion of the charged scalar form factor in the nonlocal stochastic scheme. 

Having expanded the form factor, an essentially standard (Parisi and 
Wu, 1981; Bern et al., 1987b)iterative procedure allows the expansion of 
the Langevin solution 

c o  

Ag[rt]= ~ emA~ "~ (7.8) 
m = O  

co oo 

~b(r/)= ~ emq5 (m), 4,*('q)= Y~ e"4, *(~ (7.9) 
m = O  m = O  

to any desired order. For the photon mass computation, the relevant results 
for the form factor K~~ are 

a~~162 t)=f (ay) f~ d t ' G ~ ( x - y , t - t ' )  

• I (dz) Kzy(D)~o(z, t') (7.10a) 

x [-ie4)*(~ t')(O~-'g~)4)(~ t)] (7.lOb) 

e2A~2)t_ t ) = f ( d y ) f ~  a t ' G ~ ( x - y , t - t ' )  
oc~ 

• [-ie2r t')(O~-O~)qb~~ t') 
- ie2ga*W)(y, t')(O~ -O~)O~l~(y, t') 

- 2e2A~)(y, t')6 *~~ t')4~~ t')] (7.10c) 
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and 

qb(~ (dY)[~o dt'G(x-y't-t')IdzKy=([--1)71(z't'); (7.1 la) 

0u~b (y, t') 
cO 

+ O. ( A~)(y, t')O (~ t ' ) ) _ 1  r (O)(y ' t') O .A~(y ,  t')] o[ 
+2 I (dz) [H([~)F1Kfl)([])+ K(1)(D)F1H(E])]yzrI(z, t')] 

(7.11b) 

Such expansions may be represented diagrammatically to all orders as 
Langevin tree graphs, as shown in Figure 17. 

A~ ~ = ~ ~  

J V  

e A (0  ~ ,  

" ~/~ = 

r r .  

,__ff 

Fig. 17. Langevin tree diagrams for the photon field in the nonlocal stochastic scheme. 
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According to Bern et al. (1987b), these Langevin tree diagrams may 
be constructed to all orders from the simple set of momentum-space 
Langevin tree rules shown in Figure 18. Finally, the diagrams of the n-point 
nonlocal Green functions are formed by contracting the trees, as usual, 
according to equations (7.2a) and (7.2b). 

There are three types of diagrams in Figure 19 giving nonvanishing 
contributions to the zero-momentum vacuum polarization (we do not 
explicitly exhibit diagrams which are trivially related by symmetry). We 
now study these diagrams. First, to calculate corresponding contributions, 

P r o p o ~ a ~ o r s :  

V 

�9 z.~cp~ e -p~c~,-~/~]  

. . ~ �9 = ~ - _ r  - (p2*m2) 'C$~ ' -G)  

~ ~ ~-- ~c~-~.X(-~e ~) 

~, - - . , - -  ~ = ~c~ , -~ ) .  34 ( p~ e ~) 

=x=_ 

~ " r q 

k" 

> --'r -- = -- -~-- )_ = eCk-P)/~ 

Fig. 18. Langevin tree rules for scalar electrodynamics in the nonlocal stochastic scheme. 
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a2 

N 
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c) 

Fig. 19. Nonvanishing contributions to photon mass in the nonlocal stochastic scheme. 

--~2)(X. t) should be found. In accordance with (7.4), its an expression for A~ , . 
value in momentum representation acquires the form 

A~)(p, t) -- 2e 2 dr2 (dpO (dp2) (dp3) 
co 

x G~,~(p, t - t ' )G(p2,  t'-t2)K(-p212) 

I: • dt3 dr4 (dp4) G(p,, t ' -  t,)(p, +p2)~gd(p+pl--P2) 
oo 

• 6a(p2-P3-p4)Gs=(p3, t2- t3)G(p4, t2- t4)K(-p212) 

[ '] x K(-p] l  2) (p3+2pn)~---p3~ n*(P, ,  t,)~(p4, t~) 
Ol 

X ~o-(P3, t3) -~ I~2eo at3 (dp4) G ( p l ,  t ' - / 1 ) ( 2 p 4  + P3)P(Pl + P2)v 

• ~a(p +Pa--P2}~a(P2--P3-p4)aol3(P3, t2- t3)K(-P~ 12) 

x �89 + K(')(-p~12)H(p2412)] 

x n*(pa, /a)n~(p3,  t~)~(p4, t4) 

- dt3 G(p3, t'-t3)G~t3(pl, t ' - t l )  
oo 

22 22 • gd(p+p2--p~-p3)K(-p21 )K(-pal  )~Tt3(P~, tl) 

• 7/*(p2, tz)7/(p3, t3)} (7.12) 

Next, following the methods of Section 6 and using contractions 
between A (1)~ tx, t) and A~)(y, t)[A~)(x, t) and A~)(y, t)], one can obtain 
the explicit value for the diagrams shown in Figure 19. 
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Thus, the diagram in Figure 19a gives the following contribution to 
the photon mass renormalization: 

(a, _8e2I_oodt, f_' d t ~ f f  II,.. (p) = dt2 (@2) G..(p, t - t') 
c o  

x Gao(p, t ' -  h)G(p2, t ' -  t2)G(p2, t ' -  t2) 

x G~a(p, t ' -  tl)8o~K(-p212)K(-pEl 2) 

After integration over fifth-time variables and truncation near p--0 ,  
which is accomplished by removal of the two Ao. = .( _r (p) _+ aL~f)/p 2 factors, 
we obtain at equilibrium 

(a) f 2 
I I z ~ ( O )  = --2e2t$~.~ (dq) V(-q212) or+m2e21n rn2/z 

m 2 + q  2 - - - - 2 e  2 16rr212 a**~ (7.13) 

where we have a s s u m e d  V(-p212)Ip2+o = 1 by the normalization condition 
and notation or = lim~_._a v(x)/(1 +x). It is easily seen that contributions 
corresponding to the diagrams in Figures 19b and 19c are equal to each 
other, the explicit value of which is given by 

I I ~ ( p )  = - 4 e  2 dt3 ( d p , )  H.~(p) = V(-p212)l 2 dt' dt2 
o o  

x Gup(p, t -  t ')G(pl, t ' -  t2)G(p+pl, t ' -  t2) 

x Gat3(Pl, t2 - t3)G.~(p, t ' -  t3)(2p1 +p)p(2p~ +P)a 

x K(-p212)K")(-(p +p,)212)H(p2,12) 

Elementary integration over fifth-time variables gives in the limit p -+ 0 
(b) = _ e  2 I I .~(p)  A~o(p)Ao~(p)12V(-p212) 

f q2K(-q212)K~ (7.14) 
• (dq) m 2 -t- q2 

o r  

e 2 or 
II(b)(o 

.~, ) -- 16~.2 2/~ ~-~ 

Finally, the contribution corresponding to the diagram of figure 19d is 

II~.~ (p) = - 8 e  2 V(-p212) o0 dt' oo dt2 dt3 dt4 (dq) Gj.p(p, t - t') 

x(2q+p)pG(p, ,  t ' - t4)G(p+q,  t ' - t 2 ) [ ( 2 q + p ) a - l p a ]  

x Ga=(p, t2- t3)G=.(p, t ' -  t3)G(q, t2- t4) V(-q212) 
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Here, integrations over fifth-time variables and d4q should be carried out, 
and the result reads in the limit p-+ 0 

e 2 
II~.~(a)(0) ---- 16,/r212 (Or + 2m212 In 12/~2) 8~,~ (7.15) 

The reader may easily verify that the sum of  all contributions is zero, 
so the photon remains massless to this order for the nonlocal  stochastic 
quantization theory, as it should. 
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